
 

 

 
Abstract 

 
In this paper, we address the problem of classifying 

image sets, each of which contains images belonging to the 
same class but covering large variations in, for instance, 
viewpoint and illumination. We innovatively formulate the 
problem as the computation of Manifold-Manifold 
Distance (MMD), i.e., calculating the distance between 
nonlinear manifolds each representing one image set. To 
compute MMD, we also propose a novel manifold learning 
approach, which expresses a manifold by a collection of 
local linear models, each depicted by a subspace. MMD is 
then converted to integrating the distances between pair of 
subspaces respectively from one of the involved manifolds. 

The proposed MMD method is evaluated on the task of 
Face Recognition based on Image Set (FRIS). In FRIS, 
each known subject is enrolled with a set of facial images 
and modeled as a gallery manifold, while a testing subject 
is modeled as a probe manifold, which is then matched 
against all the gallery manifolds by MMD. Identification is 
achieved by seeking the minimum MMD. Experimental 
results on two public face databases, Honda/UCSD and 
CMU MoBo, demonstrate that the proposed MMD method 
outperforms the competing methods. 

1. Introduction 
In traditional visual recognition task, objects of interest 

are trained and recognized from only a few samples. 
However, with the increase of available video cameras and 
large capacity storage media, many new applications are 
emerging in which the image quantity of each object of 
interest for both training and testing can be very large. For 
example, as shown in Fig.1, nowadays, in many face 
recognition applications, a great number of images for each 
known subject have been able to be collected from video 
sequences or photo album, and recognition can also be 
conducted with a set of probe images rather than single 
probe image. In other words, recognition can be formulated 
as matching a probe image set against all the gallery image 
sets each representing one subject. We call this category of 
visual tasks as Object Recognition based on Image Set 
(ORIS) problem. 

Over the past decade, ORIS problem has attracted 

increasing interest in computer vision community. 
However, it is worth pointing out that video-based object 
recognition is only a special case of ORIS. In ORIS, the 
images in the gallery or probe sets are collected not 
necessarily from consecutive video sequences but possibly 
from unordered photo album. Nevertheless, the images in 
the sets are generally of large amount and cover a variety of 
variations in the object’s appearance, due to the camera 
pose changes, non-rigid deformations or different lighting 
conditions. Therefore, we can assume that the images in 
each image set distribute on a nonlinear manifold. Thus, 
this kind of ORIS problems can be converted to the 
problem of matching different manifolds, which is the basic 
idea of this paper. 

In this paper, we formulate the ORIS problem as the 
computation of Manifold to Manifold Distance (MMD), i.e., 
calculating the distance between the gallery manifold 
learned from the training gallery image set and the probe 
manifold learned from the probe image set. We also 
propose a novel manifold learning approach, which 
expresses a manifold by a collection of local linear models, 
each depicted by a subspace. The MMD is then converted 
to integrating the distances between pair of subspaces 
respectively from one of the involved manifolds. In short, 
the main contributions of the paper lie in: 

1) We formally and explicitly formulate the ORIS 
problem as the computation of what we name 
manifold to manifold distance (MMD). 

2) After an overview on the distance measures on points, 
subspaces and manifolds, we propose a formal 
definition of MMD. 

3) To facilitate the computation of MMD, a novel 
manifold learning method is proposed, which 
represents a nonlinear manifold as a collection of 
linear subspaces. Thus, MMD is converted to the 
integration of distances between pair of subspaces. 

4) We define a more reasonable subspace distance, 
which measures not only the dissimilarity between 
the data variation modes of two subspaces but also 
the dissimilarity of the data itself. 

5) The proposed MMD method is applied to Face 
Recognition based on Image Set (FRIS) problem, and 
impressive results are achieved. 
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Figure 1: Face Recognition based on Image Set (FRIS). In FRIS, each subject is enrolled with a gallery image set, and the unknown 
subject is also represented by a probe image set. Note that the example facial images are from Honda/UCSD database [12]. 

 

2. Related work 
Recently, there is growing interest in designing novel 

methods for multiple shots based object recognition [10], 
[12], [13], [15], [20], [24], [28], [29], [30]. Many of them 
are video-based. However, since this paper mainly focuses 
on problems in which the samples in the image sets are 
unordered, those previous works using video dynamics [12], 
[14], [15], [20], [31] are less mentioned in this section. 

Broadly speaking, relevant approaches to ORIS problem 
mainly fall into two categories [10]: parametric model 
based and nonparametric sample based. Representative 
parametric methods include [1], [19]. They tend to 
represent each image set by a parametric distribution 
function and then measure the similarity between two 
distributions in terms of the Kullback-Leibler Divergence 
(KLD). The main drawbacks of parametric methods are 
that they need to solve the difficult parameter estimation 
problem and may easily fail when the training and novel 
test data sets have weak statistical relationships. Due to 
these limitations, several non-parametric methods are 
proposed based on matching pair-wise samples in the 
image sets. The basic premise behind is that the similarity 
between two sets can be reflected by the similarity of their 
corresponding modes (NN samples). For example, Hadid et 
al.[7] recently propose to use representative samples, called 
“exemplar”, for image-based matching. By representing the 
image set as a nonlinear manifold, they extract such 
exemplars from the manifold using the Locally Linear 
Embedding (LLE) [18] and k-means clustering method. 

More recently, by representing the image set as a linear 
subspace spanned by the images, the ORIS problem is 
converted to measuring the similarity or distance between 
subspaces. Representative methods include [10], [17], [27], 
[28], following the early works in [3], [8]. Basically, all 

these methods exploit the principal angles as their building 
blocks. The angles between two subspaces, which mainly 
reflect the common modes of variation of the two 
subspaces, are used as a similarity measure. As a method 
for comparing sets, the main advantages of principal angles 
include accuracy, efficiency, and robustness. 

In spirit, the proposed MMD bears some resemblance to 
[4], [7], [12], [24] in that they also represent the image set 
by nonlinear manifold. It also shares the common idea of 
exploiting principal angles as distance measure with [9], 
[10], [27], [28]. However, our method has significant 
differences from these methods. In the next sections, we 
will formulate the problem more exactly and then present 
details of different components of our method. 

3. Problem formulation 
For visual object recognition, patterns can be represented 

in three possible levels: point (i.e., individual sample), 
subspace (i.e., linear model spanned by some samples), and 
manifold (i.e., nonlinear low-dimensional embedding 
learned from a large number of samples). We believe, in 
some sense, the core of pattern classification is the distance 
computation among these representations. The distance 
over points and subspaces has been well investigated in the 
literature. However, to our knowledge, very few studies 
have been done on the distance measure for manifolds. 

In this section, after an overview of existing distance 
measures on points and subspaces, we give a primary 
formulation of manifold to manifold distance (MMD). 

As illustrated in Fig. 2, the distance over points and 
subspaces include: point to point distance (PPD), point to 
subspace distance (PSD), and subspace to subspace 
distance (SSD). Note that hereinafter we always denote 
points by ix , iy , subspaces by iS , and manifolds by iM . 
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Figure 2: Three types of distances defined over points and 
subspaces. (a) Point to point distance (PPD). (b) Point to subspace 
distance (PSD). (c) Subspace to subspace distance (SSD). 
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Figure 3: Three types of distances defined over manifolds. (a) 
Point to manifold distance (PMD). (b) Subspace to manifold 
distance (SMD). (c) Manifold to manifold distance (MMD). 

Point to point distance (PPD): denote by 1 2( , )d x x  the 
distance from point 1x  to 2x . The most commonly used 
PPD is the traditional Euclidean distance as follows: 

1 2 1 2( , )d x x x x= − . (1)

Point to subspace distance (PSD): denote by ( , )d x S  
the distance from point x  to subspace S . It is generally 
defined as the so-called L2-Hausdorff distance: 

( , ) min
y S

d x S x y x x
∈

′= − = − . (2)

In fact, x′  is the projection of x  in the subspace S , also 
the nearest point to x  in S . Thus, the PSD is actually the 
PPD from x  to its projection x′  in S . It is also known as 
“distance-from-feature-space” (DFFS) in [16], [22]. 

Subspace to subspace distance (SSD): denote by 
1 2( , )d S S  the distance between two subspaces 1S  and 2S . 

To our knowledge, there is not a unified definition yet to 
measure the SSD. Perhaps, the concept of principal angles 
is the most commonly exploited one due to its favorable 
performance [10], [17], [27], [28]. Recently, another SSD 
is proposed in [26], which can be regarded as utilizing the 
sum of DFFS between the bases of two subspaces. 

Manifold learning has become a very active research 
area in computer vision, pattern recognition and machine 
learning. Typically, the underlying structure of 
high-dimensional observation samples whose variations are 
controlled by only a few factors can be modeled by a 
low-dimensional manifold [18], [21]. While many methods 

have been developed to compute the manifold embedding, 
to our knowledge, the topic of a general distance measure 
over nonlinear manifolds has not been given proper 
attention in the literature. In the following part of this 
section, we make a primary attempt to define distances over 
points, subspaces, and manifold. There are also three 
categories of distances: point to manifold distance (PMD), 
subspace to manifold distance (SMD), and manifold to 
manifold distance (MMD), which are also shown in Fig. 3. 

Our main motivation comes from the fact that local 
linearity property holds everywhere on a global nonlinear 
manifold, and thus manifold can be modeled by a collection 
of local linear subspaces [18]. Therefore, the distances 
associated with manifold can be converted to those defined 
on subspaces. In general, the manifold to manifold distance 
can be viewed as extending subspace distance to account 
for more general and complex data variations. Formally, we 
denote the component subspaces of a manifold M  by iC , 
and express a manifold as: 

1 2{ }mC ,C , ,C…M =  (3)
where m  is the number of local linear subspaces. 

Point to manifold distance (PMD): denote by ( , )d x M  
the distance from point x  to manifold M . Similar to 
“point to subspace” distance, one can define this distance 
by finding the closest point to x  in M  as follows: 

( , ) min ( , ) min min
i i i

iC C y C
d x d x C x y x x

∈ ∈ ∈
′′= = − = −

M M
M . (4)

In analogy to x′  in the PSD, here we call x′′  the 
projection of x  in the manifold M . 

Subspace to manifold distance (SMD): denote by 
( , )d S M  the distance from subspace S  to manifold M . It 

can be defined by seeking the closest subspace to S  in 
manifold M : 

( , ) min ( , )
i

iC
d S d S C

∈
=

M
M . (5)

It comes that, SMD is reduced to SSD. In the next section, a 
novel and more reasonable SSD function will be described. 

Manifold to manifold distance (MMD): denote by 
1 2( , )d M M  the distance between manifold 1M  and 

manifold 2M . Before giving its function definition, let us 
recall the FRIS problem shown in Fig. 1. Typically, when 
the gallery and probe image sets belonging to the same 
subject contain images taken from different views but with 
a certain overlap in views, global data characteristics of the 
two sets might be very different. So, to match the two sets 
as the same class, the most effective solution is to find the 
common views and measure the similarity of those parts of 
data. Therefore, we define MMD by the closest subspace 
pair from the two manifolds as follows: 



 

 

1 1 2
1 2 2( , ) min ( , ) min min ( , )

i i j
i i jC C C

d d C d C C
′∈ ∈ ∈

′= =
M M M

M M M . (6)

Clearly, the similarity between two manifolds is computed 
as the similarity between their best suited local models. 

It is worth noting that, to compute MMD, the proposed 
measure in Eq. (6) is just one of the possibilities. While 
many others may be explored, however, for the ORIS task, 
Eq. (6) is believed to be one of the most appropriate. 

4. Computing Manifold to Manifold Distance 
As described above, we express the nonlinear manifold 

as a collection of local linear models, and then integrate the 
subspace distances to yield the final MMD. First, we give a 
brief introduction of principal angles, which serves as an 
important ingredient of our local model similarity measure. 
Then, we propose our local model constructing method. By 
defining a more reasonable local model similarity, we 
finally derive the MMD. 

4.1. Principal angles 
Principal angles 1 20 ( / 2)rθ θ θ π≤ ≤ ≤ ≤ ≤…  between 

two linear subspaces 1S  and 2S  are uniquely defined as: 

1 2

cos( ) max max
k k

T
k k kS S

θ
∈ ∈

=
u v

u v  

s.t.  1T T
k k k k= =u u v v , 0T T

k i k i= =u u v v , 
1, 2, , 1i k= −…  

(7)

where 1 2min(dim( ),dim( ))r S S=  [8]. ku  and kv  are called 
the k-th pair of canonical vectors. The cosines of the 
principal angles are called canonical correlations. 

A numerically stable algorithm to compute the principal 
angles was proposed in [3] based on Singular Value 
Decomposition (SVD). Let 1

D d1×∈P \  and 2
D d2×∈P \  

respectively denote the orthonormal basis of two subspaces 
1S  and 2S , 1d  and 2d  are the subspace dimension. The 

SVD of 1 2
TP P  is as follows: 

1 2 12 21
T T= ΛP P Q Q     s.t.     1( , , )rdiag σ σΛ = …  (8)

where 12Q  and 21Q  are orthogonal matrices. The singular 
values 1, , rσ σ…  are the cosines of the principal angles, i.e. 
canonical correlations: 

cos( )k kθ σ= ,  1, 2, ,k r= … . (9)

The associated canonical vectors are 

11 12 1[ , , ]d=U = P Q …u u , 
22 21 1[ , , ]d=V = P Q …v v . If the 

maximum principal angle is small, the subspaces are close 
to each other. Intuitively, the first pair of canonical vectors 
corresponds to the most similar modes of variation of two 
linear subspaces; every next pair to the most similar modes 
orthogonal to all previous ones. 
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Figure 4: Left: 3D “U-like shape” manifold, which is patch-wise 
linear with three planes smoothly connected with each other. 
Right: Three MLPs (encoded with distinct colors) constructed by 
our method. Each MLP is then modeled by a linear subspace. 

4.2. Local linear model construction 
To construct local linear models from nonlinear 

manifold, previous work has presented several approaches 
[4], [7], [9], [12]. However, they typically use 
iterative-based clustering methods such as k-means to 
assign samples into different clusters. This procedure has 
two main limitations: first, the number of target clusters 
need to be specified a priori manually; second, the linearity 
property of the extracted local models is not guaranteed 
explicitly. To overcome these problems, we develop an 
efficient one-shot algorithm for adaptively constructing 
local linear models. Compared with previous methods, our 
algorithm can effectively guarantee the linear property of 
the local models and meanwhile gains more computational 
efficiency. 

We first introduce a reasonable and compact definition 
of local linear patch on the manifold, called Maximal 
Linear Patch (MLP). Inspired by geometric intuition, MLP 
is defined to span a maximal linear subspace and its linear 
perturbation is naturally reflected by the deviation between 
the Euclidean distances and geodesic distances [21] in the 
patch, which is more tractable according to exactly 
designed constraints. See Fig. 4 for a conceptual illustration. 
By this new concept of local linear patch, the basic idea of 
our one-shot clustering method is that, each new MLP is 
stemmed from a seed point gradually until the linearity 
constraint is broken. This procedure can effectively 
guarantee the local linear property and adaptively control 
the number of local models. 

Formally, a data set 1 2{ , ,..., }N=X x x x  is given, where 
D

i \∈x  is a D -dimensional column vector, and N  is the 
sample number. The samples in the set are assumed to 
come from a low-dimensional manifold M . We aim to 
partition the data set X  to a collection of disjoint MLPs, 
i.e., local models iC . That is, 

1

m

i
i

C
=

= ∪X , 

i jC C∩ = ∅  ( i j≠ , , 1, 2,...,i j m= ), 

( ) ( ) ( )
1 2{ , ,..., }i i i

i NiC = x x x  (
1

m

i
Ni N

=
=∑ ), 

(10)



 

 

where m  is the number of patches and Ni  is the number of 
points in patch iC . 

To perform the partitioning, both pair-wise Euclidean 
distance matrix ED  and geodesic distance matrix GD  [21], 
are obtained firstly. Then, the m  MLPs are extracted using 
our one-shot method Algorithm 1 as follows. Note that, the 
threshold parameter θ  in Eq.(11) reflects the degree of 
linear perturbation of MLP. Easy to know, a larger θ  
implies fewer local models (thus more efficient) but larger 
linearity deviation, and vice versa. That is, θ  controls the 
tradeoff between efficiency and accuracy. 

Algorithm 1: Local model construction 
1 Initialize that 1i = , iC = ∅ , T = ∅X , R =X X ; 

2 While ( R ≠ ∅X ) 

2.1 Randomly select a seed point from RX  as ( )
1

ix , 
update ( )

1{ }i
iC = x , ( )

1{ }i
R R= −X X x ; 

For ( ( )i
m iC ∀ ∈x ) 

Identify each of its k-NNs cx  as candidate. If 

cx  satisfies simultaneously c R∈x X  and 
( ) ( )( , ) / ( , )i i

G c n E c nx θ<D x D x x  
(for ( )i

n iC ∀ ∈x ) (11) 

2.2 

then update { }i i cC C= ∪ x , { }R R c= −X X x ; 

2.3 Step 2.2 is stopped when there is no candidate 
point can be added into iC . 

2.4 1

i

T j
j

C
=

= ∪X , R T= −X X X ; 1i i← + , iC = ∅ ; 

Discussion: On the linear criterion of MLP, we exploit 
the ratio between two distances of each data pair as Eq.(11). 
Alternative strategies such as the difference between two 
distances may also be used. We believe that these strategies 
are in some sense equivalent. Another feature of our 
algorithm is the sequential and one-shot manner to 
construct MLPs. Since it is non-iterative, high efficiency 
can be guaranteed. One problem is that, the sequential 
manner may benefit the patches earlier computed, and 
those computed later might have smaller size. Fortunately, 
this problem can be handled by using a simple 
post-processing strategy based on PCA, which combines 
small patches into larger ones that can better cover the 
intrinsic linear subspace. 

To represent the local models, i.e. MLPs, we employ 
PCA subspace for its simplicity and efficiency. For each 
local model iC , we denote its sample mean by ie  and the 
corresponding principal component matrix by iD d

i
×∈P \ , 

which forms a set of orthonormal basis of the subspace. 
Here, the PCA dimension id  is chosen to preserve 95% 

       

       

       

       
Figure 5: Some local models. Each row shows a local model with 
the sample mean (first column), i.e., exemplar, and 6 
representative samples. The 1st and 2nd rows belong to one 
individual, and the 3rd and 4th rows belong to another individual.  
variances. Some local models constructed for two of the 
individuals in Fig.1 are shown in Fig. 5. It can be seen that, 
samples in a single local model exhibit slight appearance 
variations and they all look similar to the sample mean. 
Hereinafter, we call the sample centers “exemplars”, which 
can represent the samples in the local models to some 
extent and serve as another important ingredient in our 
local model similarity measure. This will be clear in the 
next section. 

4.3. Manifold to manifold distance 
By representing the local models by linear subspaces, we 

only need to define the “subspace to subspace” distance for 
the final MMD in Eq.(6). As discussed in Sec.3, some 
previous methods have utilized principal angles, which 
mainly reflect the common modes of variations between 
two subspaces while ignoring the data itself. We call their 
distance measure as “variation based measure”. In another 
aspect, several methods [4], [7] have used the sample 
means in the local models to measure the local model 
similarity. We call their distance as “exemplar based 
measure”. Since the subspace (or local model) is spanned 
by a set of samples, the two types of distance measures 
emphasize only either the similarity of data variation modes 
or the similarity of data samples itself. However, easy to 
understand, it is better to fuse both measures to give a more 
complete distance measure, which is just what we do in this 
paper. 

For two subspaces iC  and jC  constructed above, we 
denote their corresponding exemplars and orthonormal 
bases by ie , je  and iD d

i
×∈P \  jD d

j
×∈P \ . We define the 

variation distance measure of the two subspaces by the 
average of canonical correlations as follows: 

1
( , ) 1/ ( ) /

r

V i j k
k

d C C r trace r σ
=

= ⋅ Λ = ∑ . (12)

where 1, , rσ σ…  are canonical correlations in Sec.4.1 and 
min( , )i jr d d= . We then define the exemplar distance 

measure of the two subspaces by the correlation of the two 
exemplar samples: 



 

 

( , ) || || || || / T
E i j i j i jd C C = ⋅e e e e . (13)

Finally, our subspace distance measure comes in the 
form of a weighted average of the variation distance 
measure and exemplar distance measure as: 

( , ) (1 ) ( , ) ( , )i j E i j V i jd C C d C C d C Cα α= − ⋅ + ⋅ . (14)
When applying to comparing two image sets, the two 
measures complement each other: the former describes 
how similar the appearance of images in the two sets, 
whereas the latter reflects how close the common variation 
modes of images in the two sets. 

Now it is easy to compute the MMD we formulated in Eq. 
(6). Take the three manifolds 1M , 2M  and pM  in Fig. 1 for 
example. By constructing local models for each manifold, 
we compute the distances over these manifolds. In Fig. 6(a) 
and (b), we respectively show the closest local model pair 
from 1M  and pM  (the different individuals), and that from 

2M  and pM  (the same individual). 
Discussion: For measuring invariant image similarity, 

two distances called Joint Manifold Distance (JMD) [5] and 
Multiresolution Manifold Distance (MRMD) [23] were 
proposed recently. While the titles seem similar to our 
MMD, the intrinsic properties of these two methods are 
very different from ours mainly in the following aspects: 

1) Essentially, JMD and MRMD serve as distance 
measures between images to achieve invariance to 
parameterized image transformations; while MMD 
aims to measure the similarity between two sets of 
images from the nonparametric viewpoint. 

2) Both JMD and MRMD are actually defined over 
points in linear subspaces; while MMD accounts for 
the distance of data variations on general manifolds. 

3) Moreover, both JMD and MRMD involve iterative 
optimizations in a large parameter space; while our 
MMD is computed in a closed-form, which facilitates 
efficient online set matching applications. 

5. Experimental results 
The application of the above principles to a hard real 

world problem offers some useful insights into our 
proposed framework. The application we consider is the 
task of Face Recognition based on Image Set (FRIS). In 
FRIS, each known subject is enrolled with a set of facial 
images and modeled as a gallery manifold, while a testing 
subject is modeled as a probe manifold, which is then 
matched against all the gallery manifolds by MMD. 
Identification is achieved by seeking the minimum MMD. 
Note that MMD is a general distance measure for set 
comparison and its computation does not incorporate any 
discriminative information. The following sections discuss 
the experimental results in detail. 
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(b) 
Figure 6: Local model similarity. (a) Local model pair belongs to 
different individuals. (b) Local model pair belongs to the same 
individual. In both (a) and (b), the first column shows the 
exemplars of the two local models, and the rest columns show the 
first 6 canonical vectors in turn. From their correlation shown 
below the images, we can see that every pair of canonical vectors 
well captures similar variation modes. 

5.1. Experimental setting 
Datasets: We consider two different public datasets: 

Honda/UCSD [12] and CMU MoBo [6] in order to ensure 
an extensive evaluation of different methods against dataset 
changes including image resolution, facial expressions, 
illumination variations and the size of the dataset. 

The first dataset, Honda/UCSD, is collected by Lee et al. 
for video-based face recognition. We consider their first 
subset, which has 59 video sequences of 20 different people 
(each person has at least 2 videos). Each video consists of 
about 300-500 frames. During the data collection, the 
individuals were asked to move in different combinations 
of rotation, expression, and speed. We use a cascaded face 
detector [25] to detect faces in each video sequence. Each 
faces are then resized to gray images of size 20×20, 
followed by histogram equalization to eliminate the 
lighting effects. Fig. 1 has shown some examples. 

The second dataset, MoBo (Motion of Body), is the most 
commonly used in video-based face recognition research 
[7], [11], [15], [31]. It was originally collected for the 
purpose of human identification from distance. The 
considered subset contains 96 sequences of 24 different 
subjects walking on a treadmill (each person has 4 videos). 
Each sequence has 300 frames. From each video sequence, 
facial images are obtained in the same way as we did for the 
Honda dataset. The size of the resulted facial images is 
30×30 pixels. Some example images are shown in Fig. 7. 

For each individual of both datasets, one video sequence 
is used for training and the rest sequences are used for 
testing. On each dataset, we perform experiments for 5 
randomly selected training/test combinations for reporting 
identification rates. 



 

 

      
Figure 7: Examples of facial images from the MoBo database. 

Comparative methods: We perform experiments on the 
following methods: 

1. Nearest neighbor (NN) matching in (i) Eigenface, 
and (ii) Fisherface [2], 

2. NN matching in LLE + k-means clustering [7], which 
is a typical exemplar-based method, 

3. Mutual Subspace Method (MSM) [28], which is a 
typical variation-based method, 

4. Our Manifold to Manifold Distance (MMD) method. 

Parameter setting: In NN-Eigenface, the dimension is 
set to preserve 95% of data energy. In NN-Fisherface, PCA 
was applied first to avoid singularity problems and the 
dimension of LDA is set to the number of classes minus 1. 
In LLE + k-means, we use the same parameters setting as 
[7]. For each training video sequence, k=5 exemplars are 
extracted. These three methods all determine the identity of 
the probe sequence using majority voting scheme. In MSM, 
we first apply PCA to each image set to get its subspace 
basis. The PCA also preserves about 95% of data energy, 
and then the first 10 canonical correlations are exploited. 

Our implementation: The important parameters in the 
proposed MMD include: (i) the threshold θ  in Eq.(11). 
Under an empirical setting 1.1θ = , one set with 300-400 
images, which is typically the case in both datasets above, 
can obtain about 6-10 local models. (ii) The PCA 
dimension id  for representing the local model iC . By 
preserving 95% data variances in our work, the value of id  
varies from 5 to 10 for different local models. (iii) The 
weighting parameter α  in Eq. (14). It is set to 0.5 for equal 
weights of the variation distance measure and exemplar 
distance measure. 

 

5.2. Identification results and analysis 
The identification performance for each 5 experiments 

on both databases is demonstrated in Fig. 8. The 
recognition rates shown in Table 1 are the average results 
over all 5 random trials of the evaluated algorithms. 

First, it can be seen the two frame based methods – 
Eigenface and Fisherface yield relatively poor performance, 
especially in the Honda/UCSD database, which contains 
larger pose variations. Though it may seem not fair to 
compare them with the set based methods, the experiments 
suggest that frame based methods are more sensitive to 
large pose changes and may not work well in a real world 
unconstrained environment. 

Second, the other three methods LLE + k-means, MSM 
and our MMD, though all are set based, yield different 
results due to respective properties. Among them, MSM 
exhibits the lowest recognition rates. This is not unexpected 
since MSM simply represents the complex image set as a 
linear subspace, and as a variation-based method, it only 
considers the similarity of variation modes of two 
subspaces. In contrast, both LLE + k-means and MMD 
model the facial image sets by nonlinear manifolds. 
However, their differences are also obvious. The LLE + 
k-means method mainly exploits the concept of manifold to 
extract representative samples, i.e., exemplars, from 
training sets. In the testing stage, images in each test set are 
classified separately, and the recognition problem is thus 
reduced to NN-type image matching similar to Eigenface. 
As noted in [4], this exemplar-based method is simple and 
may not fully characterize the variability of the image set. 
In contrast, the proposed MMD method treats both training 
and test sets as manifolds, and our local model distance 
function measures not only the similarity of data samples 
but also the similarity of data variation modes. By 
integrating the properties of MSM and LLE + k-means in a 
novel way, our MMD method hence yields significant 
performance benefits. 
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Figure 8: Identification results of different algorithms on (a) Honda/UCSD database and (b) CMU MoBo database. 



 

 

Table 1. Average recognition rates (%) of different methods 
on two public databases, Honda/UCSD and CMU MoBo. 

 Honda/UCSD CMU MoBo 
Eigenface 74.2 81.0 
Fisherface 79.2 88.3 

LLE + k-means 91.8 89.8 
MSM 88.2 85.1 

Proposed MMD 96.9 93.6 

6. Conclusion and future work 
Comparing sets of images undergoing large variations is 

a challenging problem. By representing each image set by a 
nonlinear manifold, the problem is formulated as 
measuring the similarity between manifolds. To solve this 
problem, we propose a formal definition of Manifold to 
Manifold Distance (MMD), and present several technical 
contributions for its computation. The method is applied to 
face recognition based on image set. Extensive 
experimental results demonstrate that, even without any 
discriminative information, the proposed method still 
achieves better performance than the competing methods. 

Currently the MMD is exploited mainly as a general set 
distance measure and we just propose one possible solution 
to its computation. In the future, we intend to incorporate 
discriminative information for supervised classification 
problems. Another interesting direction could be to learn 
the local model distance in more sophisticated manner. 
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